Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor

Identifieur interne : 000740 ( Main/Repository ); précédent : 000739; suivant : 000741

Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor

Auteurs : RBID : Pascal:13-0366322

Descripteurs français

English descriptors

Abstract

In this study, a microchannel monolith photoreactor was investigated for photocatalytic CO2 reduction with H2O in gaseous phase using TiO2 and indium doped TiO2 nanoparticles. Effects of operating parameters such as monolith geometry, reaction temperature, indium loading and feed ratios were investigated to maximize yield rates. CO and CH4 were the main products with maximum yield rates being 962 and 55.40 μmol g-catal.-1 h-1, respectively and selectivity being 94.39 and 5.44%, respectively. The performance of the photoreactor for CO production was in the order of In/TiO2-monolith (962 μmol g-catal.-1 h-1) >TiO2-monolith (43 μmol g-catal.-1 h-1)>TiO2-SS cell (5.2 μmol g-catal.-1 h-1). More importantly, the quantum efficiency in microchannel monolith reactor was much higher (0.10%) than that of the cell type reactor (0.0005%) and previously reported internally illuminated monolith reactor (0.012%). The significantly improved quantum efficiency indicated photon energy was efficiently utilized in the microchannel monolith reactor. A simple kinetic model based on Langmuir-Hinshelwood model, developed to incorporate coupled effect of adsorptive photocatalytic reduction and oxidation process, fitted-well with the experimental data.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0366322

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photocatalytic CO
<sub>2</sub>
reduction and kinetic study over In/TiO
<sub>2</sub>
nanoparticles supported microchannel monolith photoreactor</title>
<author>
<name sortKey="Tahir, Muhammad" uniqKey="Tahir M">Muhammad Tahir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Carbon Energy Group/Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia</s1>
<s2>81310 UTM Skudai, Johor Baharu, Johor</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>81310 UTM Skudai, Johor Baharu, Johor</wicri:noRegion>
</affiliation>
</author>
<author>
<name>NORAISHAH SAIDINA AMIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Carbon Energy Group/Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia</s1>
<s2>81310 UTM Skudai, Johor Baharu, Johor</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>81310 UTM Skudai, Johor Baharu, Johor</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0366322</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0366322 INIST</idno>
<idno type="RBID">Pascal:13-0366322</idno>
<idno type="wicri:Area/Main/Corpus">000410</idno>
<idno type="wicri:Area/Main/Repository">000740</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0926-860X</idno>
<title level="j" type="abbreviated">Appl. catal., A Gen. : (Print)</title>
<title level="j" type="main">Applied catalysis. A, General : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical reduction</term>
<term>Heterogeneous catalysis</term>
<term>Kinetic model</term>
<term>Kinetics</term>
<term>Nanoparticle</term>
<term>Photocatalysis</term>
<term>Support</term>
<term>Titanium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photocatalyse</term>
<term>Réduction chimique</term>
<term>Cinétique</term>
<term>Oxyde de titane</term>
<term>Nanoparticule</term>
<term>Support</term>
<term>Modèle cinétique</term>
<term>Catalyse hétérogène</term>
<term>TiO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, a microchannel monolith photoreactor was investigated for photocatalytic CO
<sub>2</sub>
reduction with H
<sub>2</sub>
O in gaseous phase using TiO
<sub>2</sub>
and indium doped TiO
<sub>2</sub>
nanoparticles. Effects of operating parameters such as monolith geometry, reaction temperature, indium loading and feed ratios were investigated to maximize yield rates. CO and CH
<sub>4</sub>
were the main products with maximum yield rates being 962 and 55.40 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
, respectively and selectivity being 94.39 and 5.44%, respectively. The performance of the photoreactor for CO production was in the order of In/TiO
<sub>2</sub>
-monolith (962 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
) >TiO
<sub>2</sub>
-monolith (43 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
)>TiO
<sub>2</sub>
-SS cell (5.2 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
). More importantly, the quantum efficiency in microchannel monolith reactor was much higher (0.10%) than that of the cell type reactor (0.0005%) and previously reported internally illuminated monolith reactor (0.012%). The significantly improved quantum efficiency indicated photon energy was efficiently utilized in the microchannel monolith reactor. A simple kinetic model based on Langmuir-Hinshelwood model, developed to incorporate coupled effect of adsorptive photocatalytic reduction and oxidation process, fitted-well with the experimental data.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0926-860X</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. catal., A Gen. : (Print)</s0>
</fA03>
<fA05>
<s2>467</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photocatalytic CO
<sub>2</sub>
reduction and kinetic study over In/TiO
<sub>2</sub>
nanoparticles supported microchannel monolith photoreactor</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TAHIR (Muhammad)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NORAISHAH SAIDINA AMIN</s1>
</fA11>
<fA14 i1="01">
<s1>Low Carbon Energy Group/Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia</s1>
<s2>81310 UTM Skudai, Johor Baharu, Johor</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>483-496</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18840A</s2>
<s5>354000504254540570</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>57 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0366322</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied catalysis. A, General : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, a microchannel monolith photoreactor was investigated for photocatalytic CO
<sub>2</sub>
reduction with H
<sub>2</sub>
O in gaseous phase using TiO
<sub>2</sub>
and indium doped TiO
<sub>2</sub>
nanoparticles. Effects of operating parameters such as monolith geometry, reaction temperature, indium loading and feed ratios were investigated to maximize yield rates. CO and CH
<sub>4</sub>
were the main products with maximum yield rates being 962 and 55.40 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
, respectively and selectivity being 94.39 and 5.44%, respectively. The performance of the photoreactor for CO production was in the order of In/TiO
<sub>2</sub>
-monolith (962 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
) >TiO
<sub>2</sub>
-monolith (43 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
)>TiO
<sub>2</sub>
-SS cell (5.2 μmol g-catal.
<sup>-1</sup>
h
<sup>-1</sup>
). More importantly, the quantum efficiency in microchannel monolith reactor was much higher (0.10%) than that of the cell type reactor (0.0005%) and previously reported internally illuminated monolith reactor (0.012%). The significantly improved quantum efficiency indicated photon energy was efficiently utilized in the microchannel monolith reactor. A simple kinetic model based on Langmuir-Hinshelwood model, developed to incorporate coupled effect of adsorptive photocatalytic reduction and oxidation process, fitted-well with the experimental data.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01F01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Réduction chimique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Chemical reduction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Reducción química</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Support</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Support</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Soporte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modèle cinétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Kinetic model</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelo cinético</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>09</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>09</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>09</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>10</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>10</s5>
</fC07>
<fN21>
<s1>343</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000740 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000740 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0366322
   |texte=   Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024